Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Thick, 3D woven carbon/phenolic composites offer potential improvement over legacy thermal protection systems (TPS) for re-entry vehicle heat shield applications. However due to the scale and complexity of typical re-entry vehicle structures, it is likely that multiple 3D woven panels would need to laid up to create the overall heat shield, creating a potential weak spots at the panel joints. T.E.A.M., Inc. proposes to address the joint issue by developing an innovative stitching process capable of forming mechanically reinforced joints between densely woven, 3D carbon fiber pre-forms up to 3" thick. The Phase I scope will include design, model and fabrication of multiple stitched joint specimens, which will be tensile tested to characterize relative strengths of various joint configurations as a function of stitching parameters used. Results will enable calibration of the initial model as well as initial design of a scaled up process capable of producing a full scale, net-shape re-entry vehicle structure within Phase II.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
T.E.A.M., Inc.	Lead Organization	Industry	Woonsocket, Rhode Island
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique, Phase I

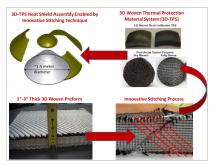
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Rhode Island	

Project Transitions

C

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/141789)

Images

Briefing Chart

Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique, Phase I (https://techport.nasa.gov/imag e/131505)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

T.E.A.M., Inc.

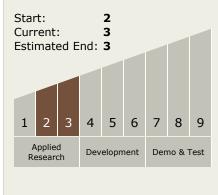
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Aaron Tomich

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.3 Thermal Protection
 Components and Systems
 └─ TX14.3.2 Thermal
 Protection Systems

